Perfect state transfer in quantum walks on graphs

نویسندگان

  • Vivien M. Kendon
  • Christino Tamon
چکیده

We provide a brief survey of perfect state transfer in quantum walks on finite graphs. The ability to transfer a quantum state from one part of a quantum computer to another is a key ingredient of scalable architectures. Transfer through structures that do not require locally varying dynamic control simplifies the design and hence reduces the opportunities for errors to arise. Continuous time walks quantum walks on highly structured graphs exhibit perfect state transfer for the complete graph of size 2, the path of length 3, and the cycle of size 4. From these, larger graphs can be constructed, and the use of edge weights widens this set considerably. Discrete-time quantum walks have more flexibility through exploiting the coin degrees of freedom, but with the disadvantage that local control of the coin is required if the degree of the vertices varies. The closely related property of periodicity (exact return to the starting state) is also mentioned.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect state transfer on signed graphs

We study perfect state transfer of quantum walks on signed graphs. Our aim is to show that negative edges are useful for perfect state transfer. First, we show that the signed join of a negative 2-clique with any positive (n, 3)-regular graph has perfect state transfer even if the unsigned join does not. Curiously, the perfect state transfer time improves as n increases. Next, we prove that a s...

متن کامل

Perfect State Transfer, Graph Products and Equitable Partitions

We describe new constructions of graphs which exhibit perfect state transfer on continuous-time quantum walks. Our constructions are based on generalizations of the double cones and variants of the Cartesian graph products (which include the hypercube). We also describe a generalization of the path collapsing argument (which reduces questions about perfect state transfer to simpler weighted mul...

متن کامل

Perfect state transfer on quotient graphs

We prove new results on perfect state transfer of quantum walks on quotient graphs. Since a graph G has perfect state transfer if and only if its quotient G/π, under any equitable partition π, has perfect state transfer, we exhibit graphs with perfect state transfer between two vertices but which lack automorphism swapping them. This answers a question of Godsil (Discrete Mathematics 312(1):129...

متن کامل

Which weighted circulant networks have perfect state transfer?

The question of perfect state transfer existence in quantum spin networks based on weighted graphs has been recently presented by many authors. We give a simple condition for characterizing weighted circulant graphs allowing perfect state transfer in terms of their eigenvalues. This is done by extending the results about quantum periodicity existence in the networks obtained by Saxena, Severini...

متن کامل

Perfect state transfer, integral circulants, and join of graphs

We propose new families of graphs which exhibit quantum perfect state transfer. Our constructions are based on the join operator on graphs, its circulant generalizations, and the Cartesian product of graphs. We build upon the results of Bašić and Petković (Applied Mathematics Letters 22(10):1609-1615, 2009) and construct new integral circulants and regular graphs with perfect state transfer. Mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010